Why should you care about the development of artificial intelligence?
Think about what the alternative would look like. If you and the wider public do not get informed and engaged, then we leave it to a few entrepreneurs and engineers to decide how this technology will transform our world.
That is the status quo. This small number of people at a few tech firms directly working on artificial intelligence (AI) do understand how extraordinarily powerful this technology is becoming. If the rest of society does not become engaged, then it will be this small elite who decides how this technology will change our lives.
To change this status quo, I want to answer three questions in this article: Why is it hard to take the prospect of a world transformed by AI seriously? How can we imagine such a world? And what is at stake as this technology becomes more powerful?
In some way, it should be obvious how technology can fundamentally transform the world. We just have to look at how much the world has already changed. If you could invite a family of hunter-gatherers from 20,000 years ago on your next flight, they would be pretty surprised. Technology has changed our world already, so we should expect that it can happen again.
But while we have seen the world transform before, we have seen these transformations play out over the course of generations. What is different now is how very rapid these technological changes have become. In the past, the technologies that our ancestors used in their childhood were still central to their lives in their old age. This has not been the case anymore for recent generations. Instead, it has become common that technologies unimaginable in one’s youth become ordinary in later life.
This is the first reason we might not take the prospect seriously: it is easy to underestimate the speed at which technology can change the world.
The second reason why it is difficult to take the possibility of transformative AI – potentially even AI as intelligent as humans – seriously is that it is an idea that we first heard in the cinema. It is not surprising that for many of us, the first reaction to a scenario in which machines have human-like capabilities is the same as if you had asked us to take seriously a future in which vampires, werewolves, or zombies roam the planet.1
But, it is plausible that it is both the stuff of sci-fi fantasy and the central invention that could arrive in our, or our children’s, lifetimes.
The third reason why it is difficult to take this prospect seriously is by failing to see that powerful AI could lead to very large changes. This is also understandable. It is difficult to form an idea of a future that is very different from our own time. There are two concepts that I find helpful in imagining a very different future with artificial intelligence. Let’s look at both of them.
When thinking about the future of artificial intelligence, I find it helpful to consider two different concepts in particular: human-level AI, and transformative AI.2 The first concept highlights the AI’s capabilities and anchors them to a familiar benchmark, while transformative AI emphasizes the impact that this technology would have on the world.
From where we are today, much of this may sound like science fiction. It is therefore worth keeping in mind that the majority of surveyed AI experts believe there is a real chance that human-level artificial intelligence will be developed within the next decades, and some believe that it will exist much sooner.
The advantages and disadvantages of comparing machine and human intelligence
One way to think about human-level artificial intelligence is to contrast it with the current state of AI technology. While today’s AI systems often have capabilities similar to a particular, limited part of the human mind, a human-level AI would be a machine that is capable of carrying out the same range of intellectual tasks that we humans are capable of.3 It is a machine that would be “able to learn to do anything that a human can do,” as Norvig and Russell put it in their textbook on AI.4
Taken together, the range of abilities that characterize intelligence gives humans the ability to solve problems and achieve a wide variety of goals. A human-level AI would therefore be a system that could solve all those problems that we humans can solve, and do the tasks that humans do today. Such a machine, or collective of machines, would be able to do the work of a translator, an accountant, an illustrator, a teacher, a therapist, a truck driver, or the work of a trader on the world’s financial markets. Like us, it would also be able to do research and science, and to develop new technologies based on that.
The concept of human-level AI has some clear advantages. Using the familiarity of our own intelligence as a reference provides us with some clear guidance on how to imagine the capabilities of this technology.
However, it also has clear disadvantages. Anchoring the imagination of future AI systems to the familiar reality of human intelligence carries the risk that it obscures the very real differences between them.
Some of these differences are obvious. For example, AI systems will have the immense memory of computer systems, against which our own capacity to store information pales. Another obvious difference is the speed at which a machine can absorb and process information. But information storage and processing speed are not the only differences. The domains in which machines already outperform humans is steadily increasing: in chess, after matching the level of the best human players in the late 90s, AI systems reached superhuman levels more than a decade ago. In other games like Go or complex strategy games, this has happened more recently.5
These differences mean that an AI that is at least as good as humans in every domain would overall be much more powerful than the human mind. Even the first “human-level AI” would therefore be quite superhuman in many ways.6
Human intelligence is also a bad metaphor for machine intelligence in other ways. The way we think is often very different from machines, and as a consequence the output of thinking machines can be very alien to us.
Most perplexing and most concerning are the strange and unexpected ways in which machine intelligence can fail. The AI-generated image of the horse below provides an example: on the one hand, AIs can do what no human can do – produce an image of anything, in any style (here photorealistic), in mere seconds – but on the other hand it can fail in ways that no human would fail.7 No human would make the mistake of drawing a horse with five legs.8
Imagining a powerful future AI as just another human would therefore likely be a mistake. The differences might be so large that it will be a misnomer to call such systems “human-level.”
AI-generated image of a horse9
Transformative artificial intelligence is defined by the impact this technology would have on the world
In contrast, the concept of transformative AI is not based on a comparison with human intelligence. This has the advantage of sidestepping the problems that the comparisons with our own mind bring. But it has the disadvantage that it is harder to imagine what such a system would look like and be capable of. It requires more from us. It requires us to imagine a world with intelligent actors that are potentially very different from ourselves.
Transformative AI is not defined by any specific capabilities, but by the real-world impact that the AI would have. To qualify as transformative, researchers think of it as AI that is “powerful enough to bring us into a new, qualitatively different future.”10
In humanity’s history, there have been two cases of such major transformations, the agricultural and the industrial revolutions.
Transformative AI becoming a reality would be an event on that scale. Like the arrival of agriculture 10,000 years ago, or the transition from hand- to machine-manufacturing, it would be an event that would change the world for billions of people around the globe and for the entire trajectory of humanity’s future.
Technologies that fundamentally change how a wide range of goods or services are produced are called ‘general-purpose technologies’. The two previous transformative events were caused by the discovery of two particularly significant general-purpose technologies: the change in food production as humanity transitioned from hunting and gathering to farming, and the rise of machine manufacturing in the industrial revolution. Based on the evidence and arguments presented in this series on AI development, I believe it is plausible that powerful AI could represent the introduction of a similarly significant general-purpose technology.
Timeline of the three transformative events in world history
A future of human-level or transformative AI?
The two concepts are closely related, but they are not the same. The creation of a human-level AI would certainly have a transformative impact on our world. If the work of most humans could be carried out by an AI, the lives of millions of people would change.11
The opposite, however, is not true: we might see transformative AI without developing human-level AI. Since the human mind is in many ways a poor metaphor for the intelligence of machines, we might plausibly develop transformative AI before we develop human-level AI. Depending on how this goes, this might mean that we will never see any machine intelligence for which human intelligence is a helpful comparison.
When and if AI systems might reach either of these levels is of course difficult to predict. In my companion article on this question, I give an overview of what researchers in this field currently believe. Many AI experts believe there is a real chance that such systems will be developed within the next decades, and some believe that they will exist much sooner.
All major technological innovations lead to a range of positive and negative consequences. For AI, the spectrum of possible outcomes – from the most negative to the most positive – is extraordinarily wide.
That the use of AI technology can cause harm is clear, because it is already happening.
AI systems can cause harm when people use them maliciously. For example, when they are used in politically-motivated disinformation campaigns or to enable mass surveillance.12
But AI systems can also cause unintended harm, when they act differently than intended or fail. For example, in the Netherlands the authorities used an AI system which falsely claimed that an estimated 26,000 parents made fraudulent claims for child care benefits. The false allegations led to hardship for many poor families, and also resulted in the resignation of the Dutch government in 2021.13
As AI becomes more powerful, the possible negative impacts could become much larger. Many of these risks have rightfully received public attention: more powerful AI could lead to mass labor displacement, or extreme concentrations of power and wealth. In the hands of autocrats, it could empower totalitarianism through its suitability for mass surveillance and control.
The so-called alignment problem of AI is another extreme risk. This is the concern that nobody would be able to control a powerful AI system, even if the AI takes actions that harm us humans, or humanity as a whole. This risk is unfortunately receiving little attention from the wider public, but it is seen as an extremely large risk by many leading AI researchers.14
How could an AI possibly escape human control and end up harming humans?
The risk is not that an AI becomes self-aware, develops bad intentions, and “chooses” to do this. The risk is that we try to instruct the AI to pursue some specific goal – even a very worthwhile one – and in the pursuit of that goal it ends up harming humans. It is about unintended consequences. The AI does what we told it to do, but not what we wanted it to do.
Can’t we just tell the AI to not do those things? It is definitely possible to build an AI that avoids any particular problem we foresee, but it is hard to foresee all the possible harmful unintended consequences. The alignment problem arises because of “the impossibility of defining true human purposes correctly and completely,” as AI researcher Stuart Russell puts it.15
Can’t we then just switch off the AI? This might also not be possible. That is because a powerful AI would know two things: it faces a risk that humans could turn it off, and it can’t achieve its goals once it has been turned off. As a consequence, the AI will pursue a very fundamental goal of ensuring that it won’t be switched off. This is why, once we realize that an extremely intelligent AI is causing unintended harm in the pursuit of some specific goal, it might not be possible to turn it off or change what the system does.16
This risk – that humanity might not be able to stay in control once AI becomes very powerful, and that this might lead to an extreme catastrophe – has been recognized right from the early days of AI research more than 70 years ago.17 The very rapid development of AI in recent years has made a solution to this problem much more urgent.
I have tried to summarize some of the risks of AI, but a short article is not enough space to address all possible questions. Especially on the very worst risks of AI systems, and what we can do now to reduce them, I recommend reading the book The Alignment Problem by Brian Christian and Benjamin Hilton’s article ‘Preventing an AI-related catastrophe’.
If we manage to avoid these risks, transformative AI could also lead to very positive consequences. Advances in science and technology were crucial to the many positive developments in humanity’s history. If artificial ingenuity can augment our own, it could help us make progress on the many large problems we face: from cleaner energy, to the replacement of unpleasant work, to much better healthcare.
This extremely large contrast between the possible positives and negatives makes clear that the stakes are unusually high with this technology. Reducing the negative risks and solving the alignment problem could mean the difference between a healthy, flourishing, and wealthy future for humanity – and the destruction of the same.
Making sure that the development of artificial intelligence goes well is not just one of the most crucial questions of our time, but likely one of the most crucial questions in human history. This needs public resources – public funding, public attention, and public engagement.
Currently, almost all resources that are dedicated to AI aim to speed up the development of this technology. Efforts that aim to increase the safety of AI systems, on the other hand, do not receive the resources they need. Researcher Toby Ord estimated that in 2020 between $10 to $50 million was spent on work to address the alignment problem.18 Corporate AI investment in the same year was more than 2000-times larger, it summed up to $125 billion.
This is not only the case for the AI alignment problem. The work on the entire range of negative social consequences from AI is under-resourced compared to the large investments to increase the power and use of AI systems.
It is frustrating and concerning for society as a whole that AI safety work is extremely neglected and that little public funding is dedicated to this crucial field of research. On the other hand, for each individual person this neglect means that they have a good chance to actually make a positive difference, if they dedicate themselves to this problem now. And while the field of AI safety is small, it does provide good resources on what you can do concretely if you want to work on this problem.
I hope that more people dedicate their individual careers to this cause, but it needs more than individual efforts. A technology that is transforming our society needs to be a central interest of all of us. As a society we have to think more about the societal impact of AI, become knowledgeable about the technology, and understand what is at stake.
When our children look back at today, I imagine that they will find it difficult to understand how little attention and resources we dedicated to the development of safe AI. I hope that this changes in the coming years, and that we begin to dedicate more resources to making sure that powerful AI gets developed in a way that benefits us and the next generations.
If we fail to develop this broad-based understanding, then it will remain the small elite that finances and builds this technology that will determine how one of the – or plausibly the – most powerful technology in human history will transform our world.
With our work at Our World in Data we want to do our small part to enable a better informed public conversation on AI and the future we want to live in. You can find these resources on OurWorldinData.org/artificial-intelligence
Acknowledgements: I would like to thank my colleagues Daniel Bachler, Charlie Giattino, and Edouard Mathieu for their helpful comments to drafts of this essay.